Welcome!

image

This blog has moved! Visit us on our new website!

Welcome on MiKe iOS applications blog!

Follow us if you’re interested in neurology, mobile applications for physicians & patients, and digital health. You can find information about our applications for iOS devices here.

Don’t hesitate to share our articles and post your comments!

Advertisements

Which are the most useful neurological applications?

The Neurology Lounge

It is no exaggeration to say our lives revolve around apps. These handy devices bring knowledge to our fingertips at the tap of the finger, or the click of a mouse . They promise easy access to a world of information, often digested to size. Some offer tools to simplify our practice. Neurology is, or should be, no exception.

Apple Store according to the New York Times. Wolf Gang on Flikr. https://www.flickr.com/photos/wolfgangkuhnle/4163909778 Apple Store according to the New York Times. Wolf Gang on Flikr. https://www.flickr.com/photos/wolfgangkuhnle/4163909778

So what are the tools out there making neurological practice easier and handier? What are these practical shortcuts making clinical work more efficient? I browsed the web to and found some useful neurology applications and have grouped them as below.

Clinical management apps

Apps that aid the clinical examination

View original post 323 more words

We are moving!

Hi!

Our blog will now be available on our brand new website!

Don’t hesitate to follow us on our new blog to stay connected and get latest information about neurology and digital health.

Hope to see you soon!

The interactive web-based program MSmonitor for self-management and multidisciplinary care in multiple sclerosis: concept, content, and pilot results

Background

There is a growing need to offer persons with multiple sclerosis (PwMS) possibilities for self-management and to integrate multidisciplinary health data. In 2009–2014 we developed a patient-reported outcome based, interactive, web-based program (MSmonitor) for (self-)monitoring, self-management and integrated, multidisciplinary care in MS.

Methods

The notions underlying the MSmonitor concept and the program’s elements are described. We analyze MSmonitor’s role in the self-management of fatigue by retrospective comparison of fatigue and health-related quality of life (HRQoL) before and after usage of specific elements of MSmonitor, and by a correlative analysis between frequency of usage and fatigue change.

Results

After a step-wise development the program comprises six validated questionnaires: Multiple Sclerosis Impact Profile, Modified Fatigue Impact Scale-5 items (MFIS-5), Hospital Anxiety and Depression Scale, Multiple Sclerosis Quality of Life-54 items, and the 8-item Leeds Multiple Sclerosis Quality of Life (LMSQoL) questionnaires; two inventories: Medication and Adherence Inventory, Miction Inventory; two diaries: Activities Diary, Miction Diary; and two functionalities: e-consult and personal e-logbook. The program is now used in 17 hospitals by 581 PwMS and their neurologists, MS nurses, physical therapists, rehabilitative doctors, continence nurses, and family doctors. Those PwMS (N=105) who used the LMSQoL and MFIS-5 questionnaires at least twice in a period of up to 6 months, showed improved HRQoL (P<0.026). In the subgroup (N=56) who had also used the Activities Diary twice or more, the frequency of diary usage correlated modestly with the degree of fatigue improvement (r=0.292; P=0.028).

Conclusion

MSmonitor is an interactive web-based program for self-management and integrated care in PwMS. Pilot data suggest that the repeated use of the short MFIS-5 and LMSQoL questionnaires is associated with an increase in HRQoL, and that a repeated use of the Activities Diary might contribute to the self-management of fatigue.

via Patient Prefer Adherence

Outstanding neurology video channels and sites

Source: Outstanding neurology video channels and sites

The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research

Interest in CD8T cells and B cells was initially inspired by observations in multiple sclerosis rather than in animal models: CD8+ T cells predominate in multiple sclerosis lesions, oligoclonal immunoglobulin bands in CSF have long been recognised as diagnostic and prognostic markers, and anti-B-cell therapies showed considerable efficacy in multiple sclerosis. Taking a reverse-translational approach, findings from human T-cell receptor (TCR) and B-cell receptor (BCR) repertoire studies provided strong evidence for antigen-driven clonal expansion in the brain and CSF. New methods allow the reconstruction of human TCRs and antibodies from tissue-infiltrating immune cells, which can be used for the unbiased screening of antigen libraries. Myelinoligodendrocyte glycoprotein (MOG) has received renewed attention as an antibodytarget in childhood multiple sclerosis and in a small subgroup of adult patients with multiple sclerosis. Furthermore, there is growing evidence that a separate condition in adults exists, tentatively called MOG-antibody-associated encephalomyelitis, which has clinical features that overlap with neuromyelitis optica spectrum disorder and multiple sclerosis. Although CD8+ T cells and B cells are thought to have a pathogenic role in some subgroups of patients, their target antigens have yet to be identified.

via The Lancet Neurol

Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant

Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse ‘global’ process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying cortical thickness and assessed their relationships with white matter pathology, physical disability and cognitive functioning. Magnetic resonance imaging was performed at 3 T in 208 patients with long-standing multiple sclerosis (141 females; age = 53.7 ± 9.6 years; disease duration = 20.2 ± 7.1 years) and 60 age- and sex-matched healthy controls. Spatial independent component analysis was performed on cortical thickness maps derived from 3D T1-weighted images across all subjects to identify co-varying patterns. The loadings, which reflect the presence of each cortical thickness pattern in a subject, were compared between patients with multiple sclerosis and healthy controls with generalized linear models. Stepwise linear regression analyses were used to assess whether white matter pathology was associated with these loadings and to identify the cortical thickness patterns that predict measures of physical and cognitive dysfunction. Ten cortical thickness patterns were identified, of which six had significantly lower loadings in patients with multiple sclerosis than in controls: the largest loading differences corresponded to the pattern predominantly involving the bilateral temporal pole and entorhinal cortex, and the pattern involving the bilateral posterior cingulate cortex. In patients with multiple sclerosis, overall white matter lesion load was negatively associated with the loadings of these two patterns. The final model for physical dysfunction as measured with Expanded Disability Status Scale score (adjusted R2 = 0.297; P < 0.001) included the predictors age, overall white matter lesion load, the loadings of two cortical thickness patterns (bilateral sensorimotor cortex and bilateral insula), and global cortical thickness. The final model predicting average cognition (adjusted R2 = 0.469; P < 0.001) consisted of age, the loadings of two cortical thickness patterns (bilateral posterior cingulate cortex and bilateral temporal pole), overall white matter lesion load and normal-appearing white matter integrity. Although white matter pathology measures were part of the final clinical regression models, they explained limited incremental variance (to a maximum of 4%). Several cortical atrophy patterns relevant for multiple sclerosis were found. This suggests that cortical atrophy in multiple sclerosis occurs largely in a non-random manner and develops (at least partly) according to distinct anatomical patterns. In addition, these cortical atrophy patterns showed stronger associations with clinical (especially cognitive) dysfunction than global cortical atrophy.via Brain.

The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets

Identification of the target antigens of pathogenic antibodies and T cells is of fundamental importance for understanding the pathogenesis of multiple sclerosis, and for the development of personalised treatments for the disease. Myelin-specific CD4+ T cells emerged long ago as a key player in animal models of multiple sclerosis. Taking a forward-translational approach, autoreactive CD4+ T cells have been studied extensively in patients with multiple sclerosis, and there is evidence, but as yet no direct proof, that autoreactive CD4+ T cells are a key player in the pathogenesis of the disorder. Several therapies that selectively target myelin-specific CD4+ T cells have been investigated in clinical trials up to phase 3. So far, however, none of these (mostly underpowered) therapeutic trials have provided definitive evidence of clinical efficacy. One major obstacle to personalised, highly selective immunotherapy is the absence of standardised and reliable assays to assess antigen-specific human T-cell responses. Such assays would be essential for stratification of patients with multiple sclerosis according to their individual target antigens.

via The Lancet Neurol